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Abstract

People tend to get confused about how some variables are kept
constant, and others varied, when calculating partial derivatives. The
following is an attempt to explain what’s going on, and also to collect
a few results connected with partial differentiation.

1 Resumé of Total Differentiation

Given two variables y and x related by y = f(x), we can define the derivative
of y with respect to x as

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

f(x + δx)− f(x)

δx
= f ′(x). (1)

Essentially1 this means that by making a small enough secant2 line, we can
make its slope as close as we please to the derivative of the curve at either
point.

It also means that the first order approximation to δy for a small secant
line is

δy ≈ dy

dx
δx

1Formally, the limit is defined by

lim
δ→0

f(δ) = L ⇐⇒ lim
δ→0+

f(δ) = lim
δ→0+

f(−δ) = L

where

lim
δ→0+

f(δ) = L ⇐⇒ ∀ε > 0 ∃δ > 0 such that |f(ζ)− L| < ε

whenever ζ ≤ δ,

where ∀ means ‘for all’ and ∃ means ‘there exists a’.
2A secant line cuts a curve at least twice, changing sides each time. A tangent is the

limit of secants between narrowly separated points.
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or, more precisely,

δy =
dy

dx
δx + O(δx2). (2)

From the definition follow the rules for differentiating polynomials and ex-
ponential and trigonometric functions, as well as the simple chain rule for
functions of functions, and the product rule.

It can make sense to calculate the total derivative when several variables
are involved. For example, suppose that z depends two variables x and y,
such that z = g(x, y), but that y itself depends on x, as y = f(x). In
this case we can certainly calculate dz

dx
, as it is d

dx
g(x, f(x)). We can also

calculate dz
dy

, which is d
dy

g(f−1(y), y). (The former divided by the latter
will, in accordance with the usual rules for manipulating derivatives, give
dy
dx

.) This works because, once we know x (or y) we can calculate z without
having to know anything else. Thus it makes sense to refer to a change in z
corresponding to a certain change in x (or y).

However, if we don’t know that y and x are related, we can’t calculate
dz
dx

, because there is no answer to the question “Given a variation δx in x,
how much does y vary?”. Furthermore, even when we know that y and x are
related, it can be useful to think separately about the changes in z due to
x directly, and those due to y (or, if you like, due to x through y). This is
what partial differentiation is for.

2 The Chain Rule

Consider a function of several variables: w = f(x, y, z). At this stage we
don’t know whether x, y and z are connected in any way. It might be that,
once we know one, we can work out the others, as in section 1. It might
be possible to specify all three of them independently. It might be that one
needs to know two of them to work out the third. At this stage we don’t
know, and don’t care, for we can define

∂w

∂x

∣∣∣∣∣
y,z

= lim
δx→0

f(x + δx, y, z)− f(x, y, z)

δx
(3)

as the partial derivative of w with respect to x, keeping y and z constant.
As with total differentiation in equation (2), we have

f(x, y + δy, z) = f(x, y, z) +
∂f(x, y, z)

∂y

∣∣∣∣∣
x,z

δy + O(δy2). (4)

This allows us to see what happens to w if we make small changes in one of
x, y or z, without doing anything to the others.
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Now what happens if we change all of x, y and z to new values? By
applying equation (4) to f(x + δx, y, z),

f(x + δx, y + δy, z) = f(x + δx, y, z) +
∂f(x + δx, y, z)

∂y

∣∣∣∣∣
x,z

δy + O(δy2),

and applying equation (4) again, but to x this time,

f(x + δx, y + δy, z) = f(x, y, z) +
∂f(x, y, z)

∂x

∣∣∣∣∣
y,z

δx + O(δx2) +

+
∂[f(x, y, z) + O(δx)]

∂y

∣∣∣∣∣
x,z

δy + O(δy2).

Applying the same procedure to z, we arrive at

δw = f(x + δx, y + δy, z + δz)− f(x, y, z)

=
∂w

∂x

∣∣∣∣∣
y,z

δx +
∂w

∂y

∣∣∣∣∣
x,z

δy +
∂w

∂z

∣∣∣∣∣
x,y

δz + O(δ2).

This is the change in w corresponding to small changes in all of x, y and z.
Dividing by δ (anything), and taking the limit as it tends to zero, we get a
relation between total derivatives. These can all be summarized by the chain
rule, which is the central result relating partial and total derivatives:

dw =
∂w

∂x

∣∣∣∣∣
y,z

dx +
∂w

∂y

∣∣∣∣∣
x,z

dy +
∂w

∂z

∣∣∣∣∣
y,x

dz. (5)

The chain rule can easily be extended to more variables or reduced to fewer.
It isn’t possible to summarize everything worth knowing about partial deriva-
tives in one equation, but, if it were, this would be that equation.

The chain rule can be used both ways round. If you know the partial
derivatives, it gives you a relation between dw and dx, dy etc. On the other
hand, if you know that dθ = Pdu + Qdv, you can infer that P = ∂θ

∂u

∣∣∣
v

and

Q = ∂θ
∂v

∣∣∣
u
, which is often useful.

3 Degrees of Freedom

Let us return to the question of how x, y and z might be related to each
other. Any relation of this sort is a restriction on the values of x, y, and z
to a subset of (x, y, z)-space. Thus if x and y can be specified independently,
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but z is fixed by z = f(x, y), the possible values of x, y and z are restricted
to a two-dimensional surface in (x, y, z)-space. This could just as well3 be
expressed as y = g(x, z) or x = h(x, y), or, more generally, as F (x, y, z) = 0,
where in this case F (x, y, z) = f(x, y) − z. There are then two degrees
of freedom. If only one variable can be specified independently, because it
determines the others, then we have a curve in (x, y, z)-space, two constraint
equations, and only one degree of freedom.

Given some w(x, y, z) which could be defined everywhere in (x, y, z) space,
but only realized on some surface z = f(x, y), how can dw be expressed in
terms of dx and dy? Using equation (5) for dw in terms of all three differ-
entials, but substituting in for dz in terms of dx and dy using equation (5)
for f , we get

dw =
∂w

∂x

∣∣∣∣∣
y,z

dx +
∂w

∂y

∣∣∣∣∣
x,z

dy +
∂w

∂z

∣∣∣∣∣
x,y

 ∂z

∂x

∣∣∣∣∣
y

dx +
∂z

∂y

∣∣∣∣∣
x

dy

 .

This expression works out dw for a given dx and dy, taking account of the
fact that we have to stay on the constraint surface by adjusting dz to keep
us there. As the condition ‘staying on the constraint surface’ ought to go
without saying, it makes sense to define

dw =
∂w

∂x

∣∣∣∣∣
y

dx +
∂w

∂y

∣∣∣∣∣
x

dy,

where it can be seen that

∂w

∂x

∣∣∣∣∣
y

=
∂w

∂x

∣∣∣∣∣
y,z

+
∂w

∂z

∣∣∣∣∣
x,y

∂z

∂x

∣∣∣∣∣
y

,

Note that we could define ∂w
∂x

∣∣∣
z
in the same way, but that it would be different.

This is the same issue which motivated the definition in equation (3) in the
first place: the derivative of w with respect to x depends on which direction
we take in (x, y, z) space. The solution there, to move parallel to the x-

axis and thus form ∂w
∂x

∣∣∣
y,z

, is unphysical if we’re required to keep to the

constraint surface. There are different directions for movement within the
surface, though: we can decide whether to keep y or z constant.

4 Change of Basis

Suppose that we have a system of related variables with two degrees of free-
dom, so that we can work out all of them once we know the value of any two.

3. . . provided that the surface doesn’t bend back on itself, which would make some of
these functions multi-valued
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The thermodynamics of some simple systems, like a fixed amount of gas, can
be described in this way. It is possible to use the chain rule, equation (5),
in order to change from one ‘basis’ of variables to another. For example, if
dU = TdS − pdV , where, of course, T = ∂U

∂T

∣∣∣
S

and p = − ∂U
∂V

∣∣∣
S
, then we can

express dU in terms of dV and dT (say) by substituting for dS in terms of
dV and dT using the chain rule. This works out to be

dU = T

(
∂S

∂V

∣∣∣∣∣
T

dV +
∂S

∂T

∣∣∣∣∣
V

dT

)
− pdV

so that

dU =

(
T

∂S

∂V

∣∣∣∣∣
T

− p

)
dV + T

∂S

∂T

∣∣∣∣∣
V

dT .

This sort of manipulation can generate all kinds of useful identities. Applying
it to a simple set of three variables, x, y, and z, again with two degrees of
freedom, we get from

dx =
∂x

∂y

∣∣∣∣∣
z

dy +
∂x

∂z

∣∣∣∣∣
y

dx

to (
1− ∂x

∂y

∣∣∣∣∣
z

∂y

∂x

∣∣∣∣∣
z

)
dx =

 ∂x

∂y

∣∣∣∣∣
z

∂y

∂z

∣∣∣∣∣
x

+
∂x

∂z

∣∣∣∣∣
y

 dz.

Since we can move about in (x, z)-space however we like, providing that
we adjust y to compensate, we can move in such a way that dx

dz
= 0, or,

alternatively, that dz
dx

=0. These are just changes which keep x and z constant,
respectively. The equation above must remain true in both cases, and this
can only happen if the coefficients of dx and dz are both zero. Using the dx
coefficient,

∂y

∂x

∣∣∣∣∣
z

=

(
∂x

∂y

∣∣∣∣∣
z

)−1

, (6)

as might have been expected (though it’s always good to make sure that
intuition can be confirmed). Using equation (6) on the dz coefficient,

∂x

∂y

∣∣∣∣∣
z

∂y

∂z

∣∣∣∣∣
x

∂z

∂x

∣∣∣∣∣
y

= −1,

which is perhaps less obvious. This last relation is known at the reciprocity
law.
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5 Total Differentials and the Legendre Trans-

formation

Any differential of a variable is known as a total differential. For example, if
f = xy2, then df = y2dx+2xydy is a total differential. It’s obvious that it’s
a total differential from the left-hand side, but, if you just had an expression
like the right-hand side, how could you decide whether or not it was a total
differential? In other words, faced with an expression like Pdx + Qdy, how
do you decide whether there is a function f such that df = Pdx + Qdy?
One way is to try to construct f by integrating P with respect to x, thus
determining f up to an arbitrary function of y, and by integrating Q with
respect to y, and seeing if these two methods can be made to agree. However,
integration can be difficult or even impossible, so it would be nicer to have
a test based on differentiation, so that there’s no need to construct f itself.
The chain rule tells us that, if the expression is a total differential, P = ∂f

∂x

∣∣∣
y

and Q = ∂f
∂y

∣∣∣
x
. Thus ∂P

∂y

∣∣∣
x

would be ∂2f
∂x∂y

, and ∂Q
∂x

∣∣∣
y

would be ∂2f
∂y∂x

. Now by

using the definition in equation (3) on itself, it can be shown that these are
equal: the order of differentiation doesn’t matter.4 Thus

∂P

∂y

∣∣∣∣∣
x

=
∂Q

∂x

∣∣∣∣∣
y

(7)

whenever Pdx + Qdy is a total differential.
In fact this is a sufficient as well as a necessary condition: it turns out

that Pdx + Qdy is a total differential whenever ∂P
∂y

∣∣∣
x

= ∂Q
∂x

∣∣∣
y
. This will be

useful later on.
Some important identities in thermodynamics can be derived in this way.

For example, given (as before) that dU = TdS − pdV ,5 we can infer that
∂T
∂V

∣∣∣
S

= ∂p
∂S

∣∣∣
V
, which is one of the Maxwell relations. More such relations can

be generated by means of the Legendre transformation: instead of considering

4In fact, they both equal

lim
δx→0

lim
δy→0

f(x + δx, y + δy)− f(x + δx, y)− f(x, y + δy) + f(x, y)
δxδy

,

provided that we are allowed to interchange the order of the limits, which is possible
provided that f is a reasonably ‘well-behaved’ function.

5This is one of the most fundamental relations in thermodynamics, which is true for
any system that can only do work mechanically, such as a gas in a cylinder. U is the
internal energy, which is the total amount of energy in the gas, T is its temperature, p is
the pressure which it exerts on the cylinder, and V is the volume which it takes up. S is
the entropy, a quantity the meaning of which I despair of explaining in a footnote.
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the differential of the function U , consider instead the differential of the
newly-invented function F = U − TS. It’s easy to show that dF = −SdT −
pdV , and since dF is a total differential, it follows that ∂S

∂V

∣∣∣
T

= ∂p
∂T

∣∣∣
V
. This

is another of the Maxwell relations. In fact F has an important meaning in
thermodynamics — it’s called the Helmholtz Free Energy — but here it’s
just a function invented to have the right sort of differential.

6 Conservative Vector Fields

A vector field F is called conservative if there exists a scalar field φ such that
F = ∇φ. There’s an important connexion with total differentials here: as

F =

(
Fx

Fy

)
=

(
∂φ/∂x
∂φ/∂y

)
,

it follows that

F · dx =

(
∂φ/∂x
∂φ/∂y

)
·
(

dx
dy

)
=

∂φ

∂x
dx +

∂φ

∂y
dy = dφ.

In other words, if F is conservative, F · dx is a total differential.
If we integrate F along some path from x = a to x = b in (x, y)-space,

we get ∫ b

a
F · dx =

∫ b

a
dφ = φ(b)− φ(a).

This shows that the integral of a conservative vector field along a path de-
pends only on the start and end points on the path, not on the route taken
between them.6 Similarly it follows that, around a closed path ΓC ,∮

ΓC

F · dx = 0.

If F represents a force field, then this integral is the work done by the force
on an object moving along the path. Since the integral around a closed loop
is always zero, no work is done overall on an object moving around a closed
loop. This means that the positive work done by the force on the object
must have exactly cancelled with the work done by the object against the
force. No energy can be gained or lost by going round a closed loop, which

6Remember that integration is the inverse of differentiation, and is a limit of adding
up many little pieces. If we add up all of the little pieces of change in φ, we must get the
total change in φ whichever way we do it.
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is why the field is called conservative. The scalar −φ is the potential energy
of the particle in the field.

Using equation (7), another condition on a conservative vector field is that
∂Fx

∂y
= ∂Fy

∂x
, i.e. that the z-component of the curl of F is zero. In fact, this all

generalizes to three dimensions, and the following conditions for conservative
vector fields are all equivalent:

∃φ such that ∇φ = F ⇐⇒
∮
ΓC

F · dx = 0 ∀ΓC

⇐⇒
∫ b

a
F · dx is independent of path ⇐⇒ ∇× F = 0.

The second and fourth conditions are equivalent from Stokes’ theorem, since
the integral of F around a closed path must always be zero if ∇×F integrates
to zero over any surface.
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